A Review of Non-Lane Road Marking
Detection and Recognition

Adam Morrissett, Sherif Abdelwahed
Department of Electrical and Computer Engineering
Virginia Commonwealth University
Richmond, Virginia 23284-3068
Emails: morrissettal2@vcu.edu, sabdelwahed @vcu.edu

Abstract—Environment perception is a critical function used
by driving automation systems, or self-driving cars, for detecting
objects such as obstacles, lane markings, and road signs. In
order to replace human drivers, self-driving cars will need to
safely operate in parking lots, private roads, underground, or
any other environment with poor GPS signals or uncharted
infrastructure. While much attention has been spent on recog-
nizing lane markings, non-lane road markings have received
considerably less attention. Current perception systems can
recognize only a small subset of markings and often only under
favorable weather conditions. This limitation is exacerbated
by the current quality of scene segmentation data sets. Only
a select few of existing data sets have annotations for non-
lane road markings, and the ones that do only have them for
a small number of marking types. Additionally most of the
data sets were generated under one type of driving condition.
Finally, it is difficult to determine if current recognition systems
can satisfy real-time requirements. This paper investigates the
current limitations and challenges for non-lane road marking
detection and recognition including recognition capabilities,
data set quality, and inference times.

I. INTRODUCTION

Signs and road markings visually convey the laws and
regulations governing road networks; they can also indicate
upcoming hazards or points of interest. For example, raised
signs can display speed limits, traffic flow, and obstructed
or “blind” turns [1], [2]. Additionally, painted solid and
striped lines indicate lane boundaries. Other road markings,
sometimes termed non-lane [3], [4] or symbolic [S]-[7]
road markings, convey similar information to raised signs
through text and/or symbols. This can include speed limits,
legal turning maneuvers, and lane restrictions [2], [8]. These
types of markings are categorized separately from lane road
markings because their immediate purpose is not to assist
drivers with staying within road lane bounds.

Obeying traffic regulations and heeding warning signs pro-
motes a safe and predictable driving environment. Therefore,
driving automation systems [9] must conform to the same
conventions as human drivers if they will be operating in
shared environments. This is especially critical on urban
roads, which are often shared with cyclists and pedestrians.
Besides non-lane road markings, driving automation systems
can receive road information from raised signs [1] and map
metadata [10]. While raised signs are often abundant, and
maps are increasingly more detailed, this information is

unavailable in certain areas. Private parking lots and roads are
often uncharted, and cellular networks and global positioning
systems (GPSs) are unreliable in concrete structures, such
as parking garages. Additionally, some urban areas use only
road markings to convey road information [11]. In these
cases, driving automation systems are forced to rely on non-
lane road markings to indicate appropriate driving maneuvers.

Human drivers can easily recognize and interpret a variety
of road signs and markings, but this task can be challeng-
ing for driving automation systems. Obstructed or degraded
markings and inconsistent light conditions can hinder detec-
tion and recognition accuracy. Non-lane road markings also
vary from location to location, making it more difficult for
detection and recognition systems to generalize. Furthermore,
detection and recognition systems need to operate quickly and
predictably in order to satisfy real-time constraints.

Despite its necessity, detecting and recognizing non-lane
road markings remains a relatively open problem compared
to lane-marking detection. Current machine-learning-based
approaches can achieve high recognition accuracy but only
for a small subset of marking classes. Many of these ap-
proaches have been tested only under a small number of
different driving conditions; some have been tested under
only one. Furthermore, many existing works do not disclose
the runtime performances of their systems, making it difficult
to determine the current state of the art in that aspect.

Data set quality is another factor limiting detection and
recognition systems. Out the 11 data sets mentioned in this
paper, only 4 include annotations for non-lane road markings
[71, [12]-[14]; the others do not distinguish between the
road surface and non-lane road markings. These 4, however,
annotate only a small number of markings, much less than
the number of existing ones. Also, most of the data sets were
generated under only sunny, favorable weather conditions.

To facilitate research related to non-lane road marking
detection and recognition, this paper provides a survey on
the current state of the art including detection and recognition
capabilities, data set quality, and inference times. The rest of
the paper is structured as follows. Section II formulates the
problem and the typical pipelines used in detection and recog-
nition systems. Section III discusses conventional approaches
toward non-lane road marking detection and recognition.



(b)

Fig. 1. Non-lane road marking examples. (a) Railroad crossing [12]. (b)
“Keep clear” text [12]. (c) Front arrow and “bridge” text [13].

Section IV discusses end-to-end detection and recognition
systems. Section V discusses the typical data sets used in
non-lane road marking detection and recognition. Section
VI presents open problems and suggests future research
directions. Finally, Section VII concludes the paper.

II. PROBLEM FORMULATION

Road networks throughout the world are supported by
a variety of information encoded in various formats; one
of these formats is non-lane road markings. Specifically,
non-lane road markings are markings containing text and/or
symbols that are painted on roads to convey information
to drivers. This information can include, but is not limited
to, points of interest, speed limits, or available maneuvering
options.

Non-lane road marking types and specifications vary by
location. For example, Virginia actively uses at least 25
different symbolic markings including turning arrows, special
lane indicators, yield symbols, and railroad crossings among
other symbols [15]. Note this list does not include text-based
markings or a combination of text and symbolic markings.
Fig. 1 shows examples of different types of markings taken
from the Road Marking [12] and Tsinghua Road Marking
[13] data sets, explained later.

Environment perception is a challenging task for humans.
The driving environment is cluttered with distractions such
as advertising billboards, varying scenery, and interesting
buildings. While they may be pleasing to look at, these
features can distract drivers from numerous important signs
that inform them about the road. The driving scene is
often further cluttered in urban environments where visual
distractions are significantly denser. To make driving even
more challenging, drivers need to correctly interpret all of
these signs continuously; new signs are always approaching
with new information. Drivers are also expected to accurately
and quickly read signs and markings in adverse conditions,
such as fog, heavy rain, darkness, or any combination.

Perception is even more complicated for computers be-
cause in addition to challenges in capturing images, they do
not possess intuition. Images can be noisy, especially in low-
light conditions. They can also be blurry if the camera is not
capturing fast enough (i.e., the shutter speed is too slow) with
respect to movement speed. Illumination changes affecting
human perception are exacerbated in camera systems; what
may be difficult for a human driver to see may be impossible
for a camera to see. Marking meaning or applicability can
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Fig. 2. Detection and recognition pipelines. (left to right) Conventional
pipeline, partial end-to-end pipeline, full end-to-end pipeline.

also change depending on context. Despite these numerous
challenges, recent works in computer vision and machine
learning have shown promising results.

Many works using traditional computer vision frameworks
followed a similar pipeline consisting of pre-processing,
marking detection, and marking recognition. As machine
learning techniques have become popular, some researchers
substituted portions of this pipeline for machine learning
algorithms, creating a partial end-to-end system. Other re-
searchers have gone further and replaced the whole pipeline
with machine learning algorithms creating a full end-to-
end system. Fig. 2 provides a visual representation of these
pipelines. The rest of this paper will discuss the different
approaches in relation to this pipeline.

III. CONVENTIONAL DETECTION AND RECOGNITION

1) Pre-Processing: We define pre-processing as image
transformations that do not explicitly function as detection
or recognition sub-systems, but rather remove noise or other
distractions to aid in these processes. Some of the types of
pre-processing commonly employed are region of interest
(ROI) reduction, thresholding, and inverse perspective map-
ping (IPM).

One simple method of reducing the size of ROIs is by
removing areas of the scene in which there are no road
markings, such as above the horizon [3], [16], [17]. By
assuming all markings will be in the lower half of the image,
the ROI size can be easily reduced without any complex
operations. Two problems with this is that it requires precise
positioning of the camera to avoid losing relevant data and
that it still leaves unnecessarily large ROIs.

A more sophisticated technique for eliminating areas above
the horizon is implementing an automatic horizon or vanish-
ing point detection mechanism [18], [19]. Other researchers
limit the ROIs to the current lane of the ego-vehicle [17],
[20]. However, this also restricts marking detection to the
current lane even though other information, such as legal
turning maneuvers, could be displayed in adjacent lanes.
Some works limit the ROI to all detected lanes to allow
for a better understanding of the entire roadway [21], [22].
However, all of these methods require vehicles to have
lane detection functionality and for this functionality to be
operational.



Another pre-processing technique called thresholding is
used to remove any pixels that are not part of the mark-
ing candidates. One thresholding method, called the Otsu
method, is used to filter out pixels that are not between
lane lines [22]. Median thresholding, which uses the median
value of the entire image row, is another type [7]. A modified
version of median local thresholding, called 43rd percentile
thresholding, allows markings to be filtered based on size
[23]. Other types of thresholding include high brightness
filtering [6], top-hat filtering [24], and adaptive image thresh-
olding [3], [19].

Finally, inverse perspective mapping (IPM) has been an
incredibly popular pre-processing step as it is used by almost
all works implementing traditional or partially end-to-end
pipelines. This technique allows perspective distortions from
the camera to be removed and for a top-down version of the
image to be generated, thus allowing for easier and more
accurate road marking detection and recognition. However,
one problem associated with this technique is that it requires
knowledge about the camera, and it requires camera calibra-
tion [25].

2) Detection: After the image has been pre-processed,
non-lane road marking candidates are detected and separated
from the background. A variety of techniques have been used
for marking candidate selection. Back projection can be used
to determine the overall size of each marking, and is a popular
choice for template-based classifiers [6], [21], [22].

Connected component analysis and principal component
analysis (PCA), have been widely used techniques for detect-
ing and extracting potential marking candidates. Connected
component analysis has been used by [20], [21], [23], and
PCA has been used by [3], [26]. A variant of connected
component analysis, called marker-based connected compo-
nent analysis has also been used [24], [27]. Additionally,
connected component analysis has been coupled with a
support vector machine (SVM) to further refine candidate
selection based on histogram of gradient (HOG) features [28].
Maximally stable extremal regions (MSERs) have also been
proposed to distinguish between marking candidates and the
rest of the roadway [12], [29], [30].

Machine learning has also been used for marking candidate
selection. In [31], the binarized normed gradient (BING)
method is used in conjunction with an SVM to detect possible
road markings. Researchers in [18] used an SVM to improve
their marker-based watershed algorithm. A deconvolution
network is used in [7] to detect and classify pixels in the
frame according a particular category, such as road, lane, or
sky.

Binarization has been a common method of transforming
any filtered images into a binary image before being sent
to the recognition module [6], [18], [21], [28]. For many
machine-learning-based detection and recognition systems,
one of the final stages of detection has been to generate
histograms of gradients (HOGs) [6], [12], [24], [28], [29].
HOGs are a way to represent the features of an object by
deriving the gradient of groups of pixels in all directions.

3) Recognition: After marking candidates have been de-
tected, they can be classified. A variety of methods have been
proposed to do so, with the most popular being template
matching, SVMs, and variations of neural networks.

Originally, marking detection and recognition was per-
formed using template matching [12], [21], [23], [25], [26].
Template, or geometric pattern, matching involves creating
a representation of each marking class to create a database
which is then used to compare unknown marking candidates.
These templates have been created based on national stan-
dards for markings, and the classifier determines the validity
of a candidate based on how well it matches the database
templates [32]. Variations of this method include prototype
fitting with arc splines [20] and pattern matching of geometric
sub-components of marking candidates [17].

The most significant problem with the pattern matching
approaches is the dependence on national standards. Because
the templates are generated from the specifications listed
in roadway standards documents, they are effective only
in locations that implement the assumed standards. Addi-
tionally, the deterioration, obstruction, or design changes of
these markings make pattern matching approaches difficult
to generalize. These systems also lack the accuracy required
for reliable use with many achieving around 90% or less
accuracy.

Eventually, SVMs and other machine learning techniques
started becoming more popular. A multi-class SVM classifier
in which a single SVM was dedicated to detecting and
classifying a single marking class was proposed in [22],
[28]. Similarly, a decision tree was proposed by [33]. In
[31], a PCANet-based classifier was proposed in which a
PCANet [34] was used to filter out false marking candi-
dates, and an SVM was used to classify the remaining true
candidates. A cascaded classifier using AdaBoost was used
in [24], where Haar-like descriptors were used for coarse
detection and an extreme learning machine (ELM) was used
for fine recognition. However, this system was only able
to classify arrow and diamond markings. Another cascaded
classifier was proposed in [6] in which a two-class total error
rate (TER)-based classifier was used to reject non-marking
candidates, and a multi-class TER-based classifier was used
for marking candidate recognition.

Some researchers began to add functionality to also detect
and classify text-based markings. Researchers in [29] used
a multi-level classifier with an optical character recognition
(OCR) classifier for text-based markings and an SVM for
symbol-based markings. In turn, those in [18] used an OCR-
based classifier for both text- and symbols-based markings
with the Tesseract library.

IV. END-TO-END DETECTION AND RECOGNITION

More recent approaches have used variants of neural
networks and other deep learning methods, specifically con-
volutional neural networks (CNNs). In [19], contour repre-
sentations of marking candidates were passed through an
artificial neural network (ANN). This network contained a
single hidden layer and used back-propagation for training.



TABLE I
CLASSIFICATION ABILITIES SUMMARY
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It was also able to detect and classify both symbols and
text. In [5], a CNN based on LeNet [38] was used to
classify both symbol- and text-based road markings. The
CNN was trained using the Road Marking data set [12], and
different architecture variations were compared. Researchers
in [30] proposed and compared the performance of three
different classifiers: PCANet and an SVM, PCANet and
logistic regression, and a shallow CNN. It was also trained
using the Road Marking data set [12]. A cascade classifier
consisting of a CNN and an SVM was proposed by [7]. The
CNN was used for marking detection and recognition, and
the SVM was used for lane detection. The authors evaluated
the classifier using their own data set [7]. A CNN was also
used in [35], which was trained using multiple data sets [12],
[39]-[42]. Unlike other learning-based systems, this one was
developed with an emphasis on detecting and recognizing
damaged markings. Additionally, a fully convolutional neural
network (FCNN) was proposed by [16] for detecting and
segmenting road markings from the rest of the driving scene.
It should be noted that this work only proposed an marking
detector for use in a larger system; it was not used for
recognition.

Common limitations for CNN-based detection and recog-
nition systems include low classification accuracy when pre-
sented with markings that are blurry, deteriorated, poorly-
illuminated, or otherwise distorted [30], [35]-[37]. To address
this limitation, Lee ef al. [37] used a two-stage system struc-
tured similarly to a generative adversarial network (GAN).
The first stage of their network, called the generator network,
used a fully-convolutional auto-encoder network to de-blur
images while preserving salient features. The second stage,
called the discriminator network, used convolutional layers
to determine the marking class and reject false positives.
Like many others, the system was evaluated using the Road
Marking data set.

Table I summarizes the classification abilities, F; scores
(if available), and overall accuracies (if available) for dif-
ferent methods. The abbreviations are defined as follows:
front arrow (FA), left arrow (LA), right arrow (RA), left-
right arrow (LRA), front-left arrow (FLA), front-right arrow
(FRA), front-left-right arrow (FLRA), STOP text, BIKE text,
PED (short for pedestrian) text, XING (short for crossing)
text, 35 (a speed limit) text, 45 (another speed limit) text,
rail road (RR) crossing symbol, and a bicycle symbol. Note

that in the entry for Lim et al. [7], the specific classes are
not populated because the authors did not provide a list of
specific classes; they only provided the total count.

While Table I seems to indicate that non-lane road marking
detection and recognition is a solved problem, it should be
emphasized that these results were achieved within a specific
environment. The presented systems are able to classify only
a small subset of commonly-used markings. None of the
approaches mentioned discuss evaluation results for marking
detection and recognition in adverse weather conditions, such
as rain. Additionally, some methods performed poorly when
presented with damaged or malformed markings [30], [36].

V. DATA SETS

As mentioned in a recent survey from Kang et al. [43],
a variety of public data sets exist to facilitate driving au-
tomation system research. Two highly popular ones are the
CityScapes [44] and Karlsruhe Institute of Technology and
Toyota Technological Institute (KITTI) [39], [40] data sets.
The CityScapes data set was created to assist with semantic
segmentation and driving scene understanding [44]. Images
were generated using a stereo camera, and the driving scenes
were annotated according to 30 different classes (e.g., road,
sidewalk, car). Additionally, the classes were collected into
8 different categories, such as flat, vehicle, and sky. The data
set also includes vehicle odometry, outside temperature, and
GPS data.

The KITTI data set was designed to facilitate general
computer vision and autonomous vehicle research [39]. The
data acquisition vehicle was equipped with both grey-scale
and color stereo cameras, a 3D lidar, and a GPS and IMU
navigation system. Images were taken in city, residential,
campus, and other driving environments. The images also
include annotations for different objects, such as cars, trucks,
and people. The KITT-ROAD data set [40], includes road
area and ego lane annotations for 600 images taken from the
original KITTTI data set. It includes images taken from urban
environments with no lane markings, two-way lane markings,
and multi-lane markings.

The Oxford RobotCar [45], Berkeley Deep Drive 100K
(BDD100K) [46], and Madlaga [41], [42] data sets are also
popular. The Oxford RobotCar data set focused on providing
data for the same place over a period of time. It is unique
compared to the other data sets because it’s focus is on
providing data of the same route over long periods of time.



By continually traveling along the same route, the authors
were able to collect data for a variety of weather conditions
and environment changes.

The BDD100K data set provides data for object detection,
lane marking recognition, drivable area detection, and seman-
tic segmentation. It is composed of crowd-sourced videos
taken under 6 different weather conditions (including snow
and rain), 3 different times of day, and in urban, residential,
and highway environments. The data set also contains GPS
and IMU data. Annotations include bounding boxes for 10
different object categories, labels for 22 different semantic
segmentation classes, and labels for 8 different lane markings.
It should be noted that the data set does not include labels
for non-lane road markings.

The Mailaga data sets were developed for simultaneous
localization and mapping (SLAM) research. The data acqui-
sition vehicles for both data sets were equipped with cameras,
2D lidars, a GPS, and an IMU. The Malaga 2009 data set
[41] contains images of the driving scene of parking lot
and college campus environments, but none of them include
annotations. Mélaga Urban [42] data set contains images of
the driving scene in parking lots, urban, and suburban driving
environments, but it also does not include annotations.

While all of previously-mentioned data sets have image
frames capturing non-lane road markings, they do not provide
annotations for them. Therefore, researchers have collected
other data sets purpose-built for non-lane road marking
detection and recognition. It should be mentioned that the
researchers in [35] used the KITTI and Malaga data sets,
but their non-lane road marking annotations have not been
publicized to the best of our knowledge.

One of these purpose-built data sets is the Road Marking
data set [12]. This data set contains 1443 images captured
from a front-facing camera mounted on the roof of a vehicle,
and the images were taken in a variety of conditions. Images
were annotated by hand with ground-truth labels for a variety
of arrow configurations and a variety of text-based markings.

More recently, researchers in [13] presented the Tsinghua
Road Marking (TRoM) data set. This data set contains 712
images and includes annotations for 6 different marking
classes. While it does not have the highest number of class
types, it does have 6 different weather conditions, the most
out of all the non-lane marking data sets and the second most
out of all the data sets mentioned in this paper.

Most recently, researchers in [14] presented the Apol-
loScape data set. The researchers used a high-resolution
camera to capture 165949 images, which were annotated to
include 20 different marking classes.

Another recent data set comes from Lim et al. [7]. Their
data set is composed of two training data sets, T-Sym and
T-Lane, and four testing data sets, Lane-1, Lane-2, Sym-
1, and Sym-2. The data sets with Sym in their name are
used for non-lane, or symbolic, road marking recognition,
and the ones with Lane in their name are used for lane
marking recognition. The combined symbolic marking data
set contains 36 000 images with 14 different marking classes.
It should be noted that the authors do not mention what the

marking classes are.

Table V provides a comparison of the different data sets
and helps emphasize their limitations as a whole. The last
column indicates the number of weather conditions contained
within the data set (sunny, overcast, rainy, nighttime, etc.). As
shown by the table, only 4 of the surveyed data sets contain
annotations for non-lane road markings. Despite containing
images of them, the other data sets do not have annotations
for these markings. Furthermore, many of the data sets
include only one type of weather condition.

VI. OPEN PROBLEMS AND FUTURE DIRECTIONS

Learning-based marking detection and recognition meth-
ods show improved accuracy and robustness compared to
conventional methods, but, like conventional methods, they
too can only classify a limited number of markings. As
mentioned previously, none of the reviewed learning-based
systems show evaluation results for adverse weather con-
ditions, such as rain, snow, or fog. Some systems also
demonstrated poor performance when classifying deteriorated
or malformed markings. Human drivers commonly encounter
these conditions, so detection and recognition systems will
need to perform well under these conditions too.

In addition to limited -classification abilities, many
learning-based methods are too slow to be implemented in
real-time driving automation systems. To the best of our
knowledge, only Hoang et al. [36] has implemented a non-
lane road marking detection and recognition system with an
emphasis on real-time performance. Similar systems have
been recently proposed for general semantic segmentation,
but they have not yet been implemented specifically for non-
lane road marking detection and recognition [47], [48]. This
could be a promising research direction.

While current machine-learning-based recognition systems
are incredibly accurate, especially compared to other meth-
ods, significant work still remains before they are ready for
production in autonomous vehicles. The most challenging
of which is the current state of data sets. As mentioned
by [49], [50], more data sets are needed to improve the
overall performance of marking detection and recognition
systems and to prevent over-fitting of training data. A larger
variety of data sets are also needed to provide training data
that encompasses a wide variety of marking types from
different locations and in different environmental conditions.
Additionally, data sets need to include images for a variety of
weather conditions, such as rain, storms, and snow; drivers
commonly experience all of these conditions. Improving
existing data sets would be a significant contribution to the
research field.

Furthermore, data sets will need to expand to include more
categories of non-lane road markings. The current amount of
road marking classes that can be recognized is significantly
less than the number used of roads. The Virginia Department
of Transportation (VDOT) lists over 25 symbolic-only road
markings and over 9 alpha-numeric-based road markings
[51]. Most current data sets include less than half of these.

Time and resource requirements for these systems is
another problem. Many of the end-to-end implementations



TABLE II
DATA SET SUMMARY

Data Set Year Images # Markings  # Weather Conditions
Road Marking [12] 2012 1443 10 4
TRoM [13] 2017 712 6 6
ApolloScape [14] 2018 165949 20 1
T-Sym, Sym-1, and Sym-2 [7] 2018 36200 14 1
Oxford RobotCar [45] 2017 20000 000! 0 7
BDDI00K [46] 2018 1000007 0 9
KITTI [39] 2013 44054 0 1
KITTI-ROAD [40] 2013 600 0 1
Mailaga 2009 [41] 2009 9998 0 1
Malaga Urban [42] 2009 113082 0 1
Cityscapes [44] 2016 25000 0 1

! Image count is an approximation based on the data set website (https://robotcar-dataset.robots.

ox.ac.uk/documentation/)

2 Image count is based on the number of lane marking annotations

mentioned previously did not disclose the hardware used for
testing. Those that did describe the testing hardware used
high-performance computers and graphics processing units
(GPUs) such as the NVIDIA GeForce GTX Titan X [35],
[37] and NVIDIA GeForce GTX 1070 [36]. Furthermore, the
processing time for each frame with some implementations
is incredibly slow at only a few frames per second [16]. This
may not be feasible if implemented in vehicles because the
system would not be able to successfully operate, especially
with the vehicle traveling at speed. If implemented in a vehi-
cle, these systems would have time and resource constraints
that could reduce their viability. For comparison, the NVIDIA
DRIVE AGX Xavier system (a purpose-built system-on-chip
for self-driving cars) has only 1024 CUDA cores while the
GTX Titan X and GTX 1070 have 3072 and 1920 cores,
respectively [52]-[54].

As autonomous vehicles become more sophisticated, non-
lane road marking detection and recognition systems will
need to operate using shared resources while still maintaining
performance goals, which may not be possible in their current
state. In the future, there will have to be a trade-off between
performance and accuracy. To help emphasize the importance
of efficiency of their detection and recognition systems, we
encourage researchers to include system utilization metrics
as part of their experimentation results.

VII. CONCLUSION

Non-lane road markings convey important traffic informa-
tion that is sometimes unavailable in other forms. Accu-
rately detecting and recognizing these markings is critical
for improving driving automation systems’ abilities. Current
implementations have limited recognition abilities that are
further limited when dealing with damaged or obstructed
markings and changing light conditions. Inference times are
too large to be used in real-time applications, especially if
computing hardware is shared with other perception or con-
trol algorithms. Furthermore, data sets contain only a limited
number of markings and weather conditions, thus hindering
development. In this paper, we discussed the current state of
the art and limitations for non-lane road marking detection
and recognition systems. Additionally, we discussed current

limitations with data sets, and we suggested future research
directions based on currently open problems.
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