
Socially-Optimal Auction-Theoretic
Intersection Management System

Adam Morrissett1, Patrick J. Martin1, Sherif Abdelwahed1

Abstract—Unsignalized intersections are often sources of
congestion and collisions. When human-driven vehicles arrive
simultaneously, the drivers typically creep out into the inter-
section or wave each other through to break stalemates. While
intuitive for human drivers, this approach would be challenging
for autonomous vehicles (AVs). Current AVs typically operate
in isolation without explicitly communicating their intentions to
others. In this paper, we propose an auction-based intersection
management system (IMS) to determine a crossing schedule.
Vehicles bid for crossing time using a cost function over different
possible crossing times, and the IMS assigns crossing times
that maximize social utility. We evaluate our system with an
ambiguous crossing scenario and demonstrate its usefulness in
determining socially-optimal crossing schedules.

I. INTRODUCTION

Road intersections are abundant and are known to cause
congestion, and they accounted for over 28 % of collisions
in 2019 [1]. Crossing unsignalized intersections, which are
common on less-dense roads or in parking lots, can be
particularly frustrating. Drivers seldom use turn signals, and
the crossing order is ambiguous when multiple vehicles
approach simultaneously.

For example, consider a four-way intersection in which
four vehicles approach simultaneously, one on each road.
Road laws require that the right-most vehicle proceeds first
through the intersection [2]. However, all four vehicles ap-
proached simultaneously, so there is no right-most vehicle. In
this scenario, drivers need to creep out into the intersection,
wave each other through, or rely on other subtle cues to break
stalemates.

Even in less ambiguous scenarios, conventional crossing
orders may be suboptimal with respect to social utility. Some
drivers may prefer to drive through the intersection quickly
while other prefer moving slowly. Some drivers may want
to cross as soon as possible while others are indifferent. The
normal first-come-first-served and right-most-first schedules
do not necessarily satisfy individuals’ preferences.

These issues stem from a lack of communication among
drivers. Without it, both human-driven and autonomous ve-
hicles must assume others’ intentions or preferences. Con-

1Department of Electrical and Computer Engineering, Virginia Com-
monwealth University, Richmond, Virginia 23284-3068. Email: morrisset-
tal2@vcu.edu, martinp@vcu.edu, sabdelwahed@vcu.edu

This work was supported (in part) by the Commonwealth Cyber Initiative
(CCI), an investment in the advancement of cyber R&D, innovation, and
workforce development in Virginia. For more information about CCI, visit
www.cyberinitiative.org.

nected autonomous vehicles (CAVs) and cooperative driv-
ing automation (CDA) [3] help provide more ways to ex-
change information between vehicles and infrastructure. In
this paper, we leverage CDA and vehicle-to-infrastructure
(V2I) communication to develop an intersection management
system (IMS) for CAVs.

IMSs for CAVs are divided into three groups. Direct
control methods determine velocity profiles that vehicles
must follow in order to cross the intersection when intended
and without collisions [4], [5]. Scheduling-based approaches
assign arrival or departure times to each vehicle so that the
intersection is clear when they arrive [6]–[8]. As opposed to
direct control methods, vehicles are responsible for determin-
ing a trajectory that satisfies their assigned time. In existing
auction-based methods, vehicles bid for intersection access
with real money or virtual tokens [9]–[11]. Vehicles with
insufficient funds are often subsidized by the management
system. The crossing order is determined by the bids, and
typically the highest bidder proceeds first.

Each of these management methods has drawbacks. Direct
control methods tightly couple the system with individual ve-
hicle dynamics and may scale poorly. Scheduling approaches
do not consider dynamics constraints when assigning arrival
times. Currency-based auctions establish an economy in
which intersection crossings are determined by economic
status rather than physical abilities or utility. Finally, none
of these approaches consider passenger preferences on how
soon and how quickly the vehicle crosses the intersection.
While traffic may be optimal with respect to throughput, it
may be suboptimal with respect to passenger satisfaction.

In this paper, we propose an auction-based IMS that
optimizes for passenger preferences while also considering
vehicle dynamics and other constraints. Vehicles submit, as
their bid, cost functions for how quickly they want to cross
the intersection and how soon. The IMS allocates a crossing
time interval to each vehicle. Each vehicle must cross the
intersection within the amount of time they are assigned. For
example, if the IMS assigns a five-second crossing time, the
vehicle must cross the intersection in 5 seconds. The system
also schedules vehicles according to their preferences on how
soon they want to cross. Vehicles’ cost functions abstract their
dynamics, allowing for a loose coupling with the IMS and
promoting scalability. To the best of our knowledge, this is
the first IMS with these features.

The rest of this paper is as follows. Section II formulates

1

2

3

4

Road-Side
Unit (RSU)

Fig. 1. Four vehicles approach an intersection. The dotted lines indicate
each vehicle’s desired path, but they do not indicate when the vehicles will
cross. Only one vehicle can cross the intersection at a time.

the problem. Section III describes our proposed system.
Section IV presents the evaluation results. Finally, Section
V concludes the paper and discusses future work.

II. PROBLEM FORMULATION

In our scenario, n vehicles drive on individual roads that
lead to the same m-way intersection. Each road may have a
variable number of vehicles. In this work, we are concerned
with only the lead vehicle on each road. Let I ⊆ Z>0 be the
set of lead vehicles wanting to cross the intersection, where
Z>0 is the set of positive integers. We define I , |I| ≤ n
to be the total number of lead vehicles. Fig. 1 illustrates
an example four-way intersection scenario with one (lead)
vehicle per road.

The intersection is unsignalized (i.e., has no traffic signals)
and may optionally have stop signs installed. Vehicles are
equipped with a communication system. A road-side unit
(RSU) is installed at the intersection to facilitate V2I com-
munication.

We assume the vehicles approach the intersection simulta-
neously (or within some small finite time window ε ≥ 0). The
crossing order initially is undetermined, so all of the vehicles
plan to stop at the intersection. Like real-world intersections,
vehicles may be perceived to have arrived simultaneously
even if their exact arrival times differ. Let ti and ti′ be the
arrival times of two different vehicles i, i′ ∈ I, respectively.
We consider vehicles i and i′ to arrive simultaneously if
|ti′ − ti| ≤ ε, where ε is determined by the system designer.

We assume that each vehicle has a preference on how
quickly it crosses the intersection. A vehicle’s preference
represents the combined preferences of its passengers. Addi-
tionally, a vehicle’s dynamics determine its ability to cross
the intersection. We define vehicle i’s crossing time ticross
as the time it takes for vehicle i to cross the intersection.
So, if ticross = 5 then the vehicle crosses the intersection in
5 seconds. We define vehicle i’s crossing cost as the cost
for crossing the intersection for a specific ticross given its
dynamics and passenger preferences. We define vehicle i’s
waiting time tiwait as the time a vehicle waits before starting
to cross the intersection. For example, when tiwait = 10,

the vehicle waits 10 seconds from the moment it received
the time before attempting to cross the intersection. We
define vehicle i’s waiting cost as the cost for waiting at the
intersection for a specific tiwait before crossing.

Our goal is to determine crossing times for each vehicle
and a crossing order that maximizes the social welfare for all
lead vehicles crossing the intersection. We use a utilitarian
social cost function, which is the summed cost (negative
utility) for each vehicle. Minimizing the social cost function
given any constraints on crossing times or the schedule
produces a socially-optimal solution [12, Sec. 22.C].

A. Vehicle Dynamics

Vehicle i moves according to a dynamics model f i : X i×
U i → X i defined by

ẋi = f i(xi,ui) , (1)

where xi ∈ X i ⊆ Rρ is the model’s ρ-element state vector,
and ui ∈ U i ⊆ Rσ is its σ-element input vector. The sets X i
and U i are vehicle i’s state and input spaces, respectively.
The specific dynamics model may differ among vehicles.

We discretize the model over the planning horizon ticross ∈
T icross ⊆ R>0, where R>0 is the set of positive real numbers.
Set T icross is the set of possible crossing times for vehicle
i. Let δi ∈ R>0 be the discretization sampling period. The
number of samples in the planning horizon N : T icross → Z>0

is a function, parameterized by δi:

N(ticross) ,

⌈
ticross

δi

⌉
. (2)

The intuition is that the planning horizon becomes longer
as the vehicle has more time to cross the intersection (i.e.,
a larger ticross). Then for all k = 0, 1, . . . , N(ticross), we
represent the discretized vehicle dynamics as

xik+1 = f id(x
i
k,u

i
k) , (3)

where xik and uik are the system’s state and input vectors,
respectively, at time k.

Each vehicle tracks a reference path, such as a turning
arc or straight line, as they drive through the intersection.
The reference path is the lane’s center line, which is pro-
vided to the planner (e.g., through a perception system). Let
ri : R≥0 → Ri be a time-varying reference function, where
R≥0 is the set of non-negative real numbers, and Ri ⊆ Rρ is
the set of ρ-element reference state vectors for vehicle i ∈ I.

B. Vehicle Costs

Vehicle i’s crossing cost incorporates dynamics model (3)
and passenger preferences. We define a twice continuously
differentiable crossing objective function

J icross : T icross ×X i × U i → R (4)

that is parameterized by passenger-selected preferences. Ve-
hicles are free to select their own objective function.

For each crossing time ticross ∈ T icross, vehicle i solves a
nonlinear optimization problem to determine its crossing cost
c?icross : T icross → R for crossing the intersection in ticross time

units. The nonlinear optimal planning problem is defined by

c?icross(t
i
cross) , min J icross(x

i,ui, ticross) (5a)

subj. to xik+1 = f id
(
xik,u

i
k

)
(5b)

xik ≤ xik ≤ xik (5c)

uik ≤ uik ≤ uik , (5d)

where xik and xik are the upper and lower bounds on xik,
respectively; uik and uik are the upper and lower bounds
on uik, respectively. Variables xi and ui (without the k
subscript) represent states and inputs, respectively, over the
entire planning horizon. We assume the vehicle model is
controllable. Common motion models, such as the simple car,
bicycle (under zero-slip assumptions), and unicycle models
exhibit this property [13, Sec. 15.1.3], [14, Sec. 2.2]. We
additionally assume the state space is connected, meaning at
least one path exists connecting a vehicle’s starting state to
its goal state; otherwise, the road would be impassible. These
two assumptions ensure (5) is feasible for at least one ticross.

It should be noted that (5) may not have a solution for a
given t̃icross ∈ T icross, meaning c?icross(t̃

i
cross) is undefined. We

define ticross and ticross as the lower and upper crossing times,
respectively, for which (5) is defined. Let ticross be the feasible
ticross mentioned above. Then there exists a larger feasible
time ti′cross that the vehicle can achieve by driving slower. This
process can repeat up to ui, thus establishing ticross. Therefore,
(5) is defined for all ticross ∈

[
ticross, t

i
cross

]
⊆ T icross.

The waiting cost ciwait : R≥0 → R represents how long
passengers are willing to wait at the intersection before
crossing. Like the crossing cost function, vehicles are free
to choose their own waiting cost function.

III. SYSTEM DESCRIPTION

To solve the intersection crossing problem defined in
Section II, we propose an IMS in which vehicles participate
in an auction to determine the crossing schedule. In this work,
the RSU serves as the auctioneer, but future work will inves-
tigate electing one of the vehicles to be the auctioneer, thus
removing a dependency on road-side infrastructure. Vehicles
use their crossing cost functions as bids, and the auctioneer
assigns a crossing time to each vehicle. Additionally, the IMS
determines a crossing order that is optimal with respect to
each vehicle’s waiting function. The goal of our system is
to maximize the social welfare of all participating vehicles
subject to any constraints imposed on the intersection.

Our system has three main components: vehicles, an auc-
tioneer, and a scheduler. The auctioneer determines optimal
crossing times with respect to its objective function and
each vehicle’s crossing cost. Afterwards, the scheduler uses
those crossing times and each vehicle’s waiting cost function
to determine a crossing order. The IMS transmits vehicles’
assigned crossing and start times. To simplify our initial
system design, we separated the auctioneer and scheduler;
however, future work will investigate combining them.

At this time, we assume only one vehicle crosses the
intersection at a time. Additionally, only the lead vehicles

Vehicle 1 Vehicle 2 Vehicle

Auctioneer Scheduler

Road-Side Unit

Vehicle 1 Vehicle 2 Vehicle

Auctioneer Scheduler

Road-Side Unit

(a)

Vehicle 1 Vehicle 2 Vehicle

Auctioneer Scheduler

Road-Side Unit

Vehicle 1 Vehicle 2 Vehicle

Auctioneer Scheduler

Road-Side Unit

(b)

Fig. 2. (a) Vehicles transmit their bids as they near the intersection. (b) The
IMS transmits each vehicle’s optimal starting and crossing times.

for each road participate in the auction. Fig. 2 visualizes the
data flow between the vehicles and IMS.

Fig. 3 depicts a scenarios with a continuous flow of
vehicles approaching the intersection. The IMS sequences
the crossings into several auctions. Once all lead vehicles
in the current auction cross (green cars), the IMS begins
another auction for the new set of lead vehicles (red cars).
The blue cars will participate in a third auction once they
are within the IMS’s range, indicated by the black dashed
circle. To minimize delays, an auction can begin as soon
as the participants are within range. This way, vehicles can
know their crossing and waiting times before reaching the
intersection.

A. Auction Mechanism

We based our solution on a concept from economics
and game theory called mechanism design [12, Ch. 23]. A
mechanism is a collection of strategy sets and an outcome
function; auctions are a type of mechanism. The auctioneer
allocates goods to vehicles based on its outcome function,
and vehicles place bids from their strategy sets to win those
goods.

As opposed to other auction-based IMSs, where agents
bid using money, the vehicles in our system bid using
crossing and waiting cost functions. Vehicles calculate their
cost curves for different crossing and waiting times then
submit them as their bids. The IMS uses this information
to determine an appropriate crossing time for each vehicle
and a crossing schedule. Fig. 4 provides an overview of the
algorithms used by the IMS and vehicles.

Fig. 3. A continuous flow of vehicles approach the intersection. The green
vehicles participate in one auction, and the red ones participate in a separate
one. The blue vehicles do not participate in any auction because they are
not yet within range of the IMS (indicated by the dashed circle).

A desirable property for any auction is ex post (or Pareto)
efficiency, meaning its outcome is Pareto optimal (efficient)
given agents’ utility functions. An outcome is Pareto optimal
if no agent’s utility can be improved without reducing another
agent’s utility.

Vehicles’ bids represent and abstract private information
that only they can observe, meaning auctions can be sus-
ceptible to strategic agents. To avoid this, auctions can be
designed to incentivize agents to bid truthfully, a property call
incentive compatibility. A sealed-bid, second-price auction
(or Vickrey auction) is an example of an incentive compatible
mechanism. For this initial work, we assume agents bid
truthfully. Future work will analyze our auction formulation
for incentive compatibility and modify it if necessary.

To demonstrate that our auction formulation is ex post effi-
cient, we need to show that the crossing time allocations and
crossing schedule are Pareto optimal. As briefly mentioned
in Section II, optimizing a utilitarian social welfare (cost)
function results in a Pareto optimal outcome.

Authors in [15] proposed a framework for comparing
different market-based coordination methods for distributed
energy systems. We use the same comparison framework to
summarize our system:
• Agent preference: Vehicle and auctioneer preferences

(objectives) are defined by (4) and (7), respectively.
• Control decision: For vehicle i, a trajectory (x?i,u?i)

that minimizes cicross for a given ticross. For the IMS, a
vector of optimal crossing times t?cross and an optimal
crossing schedule π?.

• Information structure: Type independence among
agents; Decision dependence from auctioneer to vehi-
cles.

• Solution concept: Auction-based optimization problem.

B. Vehicle Bids

Vehicles submit the crossing cost function c?icross and feasi-
bility bounds ticross and t

i
cross (from Section II-B) that they

1: for all i ∈ I do
2: {Vehicle i}
3: ci?cross(t

i
cross)← solve (5) ∀ticross ∈ T icross

4: ticross, t
i
cross ← feasibility bounds for ci?cross

5: φi ← 〈ci?cross, t
i
cross, t

i
cross, c

i
wait〉

6: Submit φi as bid
7: end for
8:
9: {Auctioneer}

10: Wait for all φi, i ∈ I
11: t?cross ← solve (8)
12:
13: {Scheduler}
14: π? ← solve (11) {See Fig. 5}
15: t

π?
0

start ← 0

16: t
?π?

0
cross ← 0

17: for all i = 1 to I do
18: t

π?
i

start ← t
π?
i−1

start + t
?π?

i−1
cross

19: Transmit 〈tπ
?
i

start, t
?π?

i
cross〉 to vehicle i

20: end for

Fig. 4. Proposed auction-based intersection management system (IMS).

calculated as their bids prior to nearing the intersection.
They also submit their waiting cost functions ciwait so that
a socially-optimal crossing schedule can be generated. We
define vehicle i’s bid φi by the tuple

φi , 〈c?icross, t
i
cross, t

i
cross, c

i
wait〉 . (6)

Vehicles submit their bids as shown in Fig. 2a.

C. Auctioneer

The auctioneer’s role is to maximize social utility by
assigning crossing times that best meet everyone’s needs.
After receiving each vehicle’s bid, the auctioneer assigns
crossing times according to vehicles’ crossing cost functions.
The auctioneer may consider other constraints or costs that
affect crossing time assignment. For example, an upper limit
on the intersection clearing time could be imposed to ensure
all vehicles cross in a timely manner.

The auctioneer’s auction cost function cauction : RI>0 → R
is defined by

cauction(tcross) ,
∑
i∈I

c?icross(t
i
cross) + cother(tcross) , (7)

where tcross ∈ T 1
cross × · · · × T Icross is an I-dimensional vector

containing each vehicle’s assigned crossing time. Function
cother : RI>0 → R represents any other costs or soft con-
straints that can influence the assigned crossing times, and
cother(tcross) = 0 if there are no other costs. The auction cost
function is a utilitarian social cost function. To determine an

1: cschedule : Π→ R {Cost for each schedule π}
2: for all π ∈ Π do
3: tπ0

start ← 0
4: tπ0

cross ← 0
5: for all i = 1 to I do
6: tπi

start ← t
πi−1

start + t
?πi−1
cross

7: end for
8: cschedule(π)←

∑
i∈I c

πi

wait(t
πi
start)

9: end for
10: return arg min

π∈Π
cschedule(π)

Fig. 5. Socially-optimal (SO) scheduling algorithm.

optimal crossing time vector t?cross, the auctioneer solves the
following optimization problem:

t?cross , arg min cauction(tcross) (8a)

subj. to ticross ≤ ticross ≤ t
i
cross ∀i ∈ I (8b)

g(tcross) = 0 (8c)
h(tcross) ≤ 0 , (8d)

where ticross and t
i
cross are the lower and upper feasibility

bounds for vehicle i’s crossing cost function (submitted in
φi), and g and h are any equality or inequality constraints,
respectively, imposed on the intersection. For example, the
total time required for all leading vehicles to cross could be
penalized to encourage vehicles to cross quickly. It is the
system designer’s responsibility to ensure constraints g and
h do not make the problem infeasible.

The auctioneer determines a crossing time allocation that
minimizes the utilitarian social cost function subject to any
constraints, thus producing a Pareto optimal outcome. If the
outcome was not Pareto optimal, there would exist another
allocation benefiting all agents and further reducing the auc-
tion cost, thus creating a contradiction. Note that because (8)
is a nonlinear optimization problem, our approach guarantees
local Pareto efficiency.

D. Scheduler
After the auctioneer assigns optimal crossing times to

each vehicle, the scheduler determines the crossing order.
We schedule vehicles in an order that maximizes the social
welfare with respect to each vehicle’s waiting cost (i.e.,
minimizes their costs). We call this a socially-optimal (SO)
scheduling algorithm.

Let π ∈ Π be a permutation on I representing a crossing
order and defined using Cauchy’s two-line notation as

π ,

(
1 2 · · · I
π1 π2 · · · πI

)
. (9)

Using this notation, we interpret πi as the ith vehicle to cross
the intersection under permutation (crossing schedule) π.
An optimal permutation π? (i.e., a socially optimal crossing
schedule) is one that minimizes the sum of vehicles’ waiting
cost functions, the schedule cost. We define the schedule cost
cschedule : Π→ R as

cschedule(π) ,
∑
i∈I

cπi

wait(t
πi
start) . (10)

The schedule cost is a utilitarian social cost function. An
optimal permutation can be determined from the following
optimization problem:

π? , arg min

I∑
i=1

cπi

wait(t
πi
start) (11a)

subj. to tπi
start = t

πi−1

start + t
?πi−1
cross , (11b)

where tπ0
start = t?π0

cross = 0. Constraint (11b) is used to
ensure only one vehicle crosses the intersection at a time,
guaranteeing collision-free crossings. Fig. 5 describes an
implementation of the SO scheduling algorithm. Because the
implementation exhaustively evaluates all possible permuta-
tions, the resulting solution is globally Pareto optimal. If
there are several Pareto optimal solutions, the scheduler will
choose the first one it encountered.

Note that while the implementation given in Fig. 5 has a
runtime complexity of O(II!), the number of lead vehicles
I per auction and scheduling iteration is low enough to
maintain tractability. Additionally, the evaluations can be
parallelized to reduce computation time.

After generating the crossing schedule, the scheduler as-
signs a start time t

π?
i

start to each vehicle under the optimal
permutation (crossing order) π?. The start time for vehicle
π?i is the sum of the start and crossing times of the previous
vehicle:

t
π?
i

start , t
π?
i−1

start + t
?π?

i−1
cross ∀i = 1, 2, . . . , I , (12)

where tπ
?
0

start = t
?π?

0
cross = 0. The IMS transmits to each vehicle

π?i the pair 〈tπ
?
i

start, t
?π?

i
cross〉 as illustrated in Fig. 2b.

IV. EVALUATION

A. Experimental Setup

We evaluated our auction-based IMS using the four-way
intersection depicted in Fig. 1. Vehicle 1 planed to turn
left, vehicle 2 planed to turn right, and vehicles 3 and 4
planed to drive straight. Lanes were 10 m wide, making the
intersection a 20 m × 20 m square. We assumed all vehicles
were equipped with an Automated Driving System (ADS)
capable of driving them to the intersection.

Each vehicle moved according to the unicycle dynamics
model:

ẋi = vi cos θi (13a)

ẏi = vi sin θi (13b)

θ̇i = ωi . (13c)

The state vector xi ,
[
xi yi θi

]ᵀ
included the vehicle’s

position (xi and yi) and heading θi. The system inputs ui ,[
vi ωi

]ᵀ
were the linear velocity vi and angular velocity

ωi. We discretized the dynamics model in (13) using the 4th-
order Runge–Kutta (RK4) method.

Each vehicle used a quadratic objective function for cal-
culating their crossing cost:

J icross(x
i,ui, ticross) , αiticross

+

N(ticross)∑
k=1

(
‖xik − rik‖Qi + ‖uik‖Ri

)
. (14)

The matrices Qi and Ri were passenger-defined preferences
on vehicle i’s states and inputs, respectively, while scalar
αi indicated passengers’ value of time. Passengers conveyed
how quickly they wanted to proceed through the intersection
using αi, Qi, and Ri.

The intuition behind the quadratic cost is that passengers
prefer to cross the intersection slower because it would result
in a more comfortable ride, meaning the cost would decrease
as ticross increased. However, passengers do not want to spend
an unreasonable amount of time crossing the intersection, so
they add a cost based on the overall crossing time.

For the waiting cost, we chose a linear function defined
by

ciwait(t
i
wait) , βitiwait , (15)

where βi ≥ 0 was a passenger-defined parameter. A linear
function makes sense because most passengers would prefer
to cross the intersection sooner rather than later. Other
monotonically increasing functions, such as the logarithm,
might also be applicable. As passengers wait longer to cross,
they may become indifferent to small time increases.

Table I contains each vehicle’s passenger preferences used
in (14) and (15). The values were determined experimentally
and chosen to showcase preferences for different types of
passengers (see Fig. 6). The red line represents passengers
that are behind in their trip schedule, so they want to cross
faster. Passengers depicted by the green line are ahead of
schedule, meaning they prefer to drive slowly. The orange
and blue lines illustrate costs for everyday drivers.

For ease of notation, we denote specific state and input
weights with their variable as a subscript on the associated
matrix (e.g., Qx denotes the weight for the x position).
We set Qθ = 0 for all vehicles. Vehicles 1 and 2 had
terminal heading constraints ensuring they were aligned with
their target lanes. Vehicles 3 and 4 drove straight, so their
heading error penalty was 0 regardless of Qθ. We restricted
the crossing time set to T icross = {t ∈ R>0 | 5 ≤ t ≤ 25} for
all vehicles. The values for βi were chosen randomly from
a uniform distribution between 0 and 40.

We implemented the IMS in Python using CasADi [16]
and the Interior Point OPTimizer (IPOPT) [17] solver. The
code is available in our GitHub repository.1

The crossing cost function c?icross as described in Section II
is continuous within its feasibility bounds. However, it would
be computationally infeasible to compute a crossing cost for
all ticross ∈ T icross. Instead, we sampled different times within
T icross and use a spline function to generate c?icross within the
feasibility bounds.

1https://github.com/the-hive-lab/autocross

TABLE I
PASSENGER PREFERENCES PER VEHICLE

Vehicle

Parameter 1 2 3 4

x-position (Qx) 1.5 3 2 4
y-position (Qy) 1.5 3 2 4
Linear velocity (Rv) 1 4 3 1.2
Angular velocity (Rω) 1 1 4 3
Max linear velocity (uv) - 2 5 -
Crossing time weight (αi) 15 12 3 10

To demonstrate the adaptability of our system, we imposed
an upper limit on the total crossing time. All vehicles must
cross the intersection within T = 50 time units. Note that
other values for T could have also been used. The modified
optimization problem for the auctioneer is

t?cross , arg min cauction(tcross) + γs (16a)

subj. to ticross ≤ ticross ≤ t
i
cross ∀i ∈ I (16b)∑

i∈I
ticross ≤ T + s (16c)

s ≥ 0 , (16d)

where T was the upper limit on the intersection clearing time.
To ensure the problem remained feasible, we used a slack
variable s to make the total crossing time a soft constraint.
However, we add a penalty parameter, γ > 0, to allow for
more strict adherence to the desired upper limit, T . In this
paper’s experiments, we set γ = 100.

We compared our SO scheduling algorithm against a ran-
dom crossing schedule. Because intersection stalemates are
broken arbitrarily for human-driven vehicles, this provided
a realistic baseline. The crossing schedule for human-driven
vehicles normally would be determined by whichever driver
creeps into the intersection first. Additionally, to the best of
our knowledge, no other works provide passenger satisfaction
metrics for their proposed solutions.

B. Results

Fig. 6 shows the crossing costs for each vehicle and as-
signed crossing times. When there were no intersection-level
constraints, vehicles were assigned their optimal crossing
times, indicated by the black circles. However, when the
intersection was constrained by (16c), it assigned slightly
faster crossing times so that all vehicles crossed within the
required clearing time.

Fig. 7 shows the schedule costs for different scheduling
iterations. As shown in the figure, the SO scheduling algo-
rithm consistently produced a more socially-favorable sched-
ule compared to the random schedule. It also significantly
reduced the overall schedule cost in each iteration. In rare
occurrences, the two schedules were equivalent; however, the
random schedule was never more beneficial than the SO one.

V. CONCLUSION

In this paper, we presented a novel auction-based inter-
section management system (IMS) that optimized crossing

10 15 20 25

200

300

400

500

Crossing Time (ticross)

C
ro

ss
in

g
C

os
t

(c
?
i cr
os

s)

Vehicle 1 Vehicle 2 Vehicle 3 Vehicle 4

Fig. 6. Crossing costs for each vehicle. Black circles are assigned times
without intersection constraints. Black squares are assigned times with
intersection constraint (16c).

0 10 20 30 40 50

0

1,000

2,000

3,000

Iteration

Sc
he

du
le

C
os

t
(c

sc
he

du
le
)

Random
SO

Fig. 7. Schedule costs for random and socially-optimal schedules.

schedules based on social welfare. Vehicles determined a cost
curve for different crossing times based on their dynamics
and passenger preferences. Those curves were used as bids,
and the auctioneer assigned crossing times that maximized
utility (i.e., minimized cost) subject to any intersection-level
constraints.

We demonstrated the usefulness of our system on a realis-
tic intersection scenario in which multiple vehicles arrived
simultaneously. Our IMS assigned cost-minimizing cross-
ing times in both constrained and unconstrained scenarios.
The scheduler similarly determined a crossing order that
maximized social utility among the vehicles. The generated
crossing schedules were consistently and significantly more
favorable than the baseline random schedule that would be
typical for human-driven vehicles. The simulations evaluated
a single group of lead vehicles, but future work will evaluate
our system against a continual flow of vehicles.

While this work presents a promising preliminary investi-
gation, there are several extensions and enhancements. Two
enhancements would be allowing multiple, non-conflicting
vehicles to access the intersection simultaneously and eval-

uating against multi-lane roads. Throughout this work, we
assumed vehicles submitted their crossing and waiting func-
tions truthfully, leaving the IMS susceptible to strategic
agents. A desirable property of mechanisms is that they
are incentive compatible, meaning it is in the agents’ best
interests to report truthfully. An important next step will be
to modify our mechanism (auction) to incentivize all vehicles
to report their bids truthfully. Extensions include holding
multiple auctions where vehicles need to compete only with
others whose paths conflict, incorporating flow constraints
to prioritize some roads over others, and coordinating with
neighboring intersections.

REFERENCES

[1] U.S. Department of Transportation, “About Intersection Safety,”
3 2021. [Online]. Available: https://safety.fhwa.dot.gov/intersection/
about/

[2] Virginia Department of Motor Vehicles, “The Virginia Driver’s Man-
ual,” 12 2019.

[3] SAE International, “Taxonomy and Definitions for Terms Related to
Cooperative Driving Automation for On-Road Motor Vehicles,” SAE
International, Tech. Rep., 2020.

[4] M. A. Guney and I. A. Raptis, “Scheduling-Based Optimization for
Motion Coordination of Autonomous Vehicles at Multilane Intersec-
tions,” J. of Robot., vol. 2020, 2020.

[5] M. Stryszowski, S. Longo, E. Velenis, and G. Forostovsky, “A
Framework for Self-Enforced Interaction Between Connected Vehicles:
Intersection Negotiation,” IEEE Trans. on Intell. Transp. Syst., pp. 1–
10, 2020.

[6] S. A. Fayazi and A. Vahidi, “Mixed-integer linear programming for
optimal scheduling of autonomous vehicle intersection Crossing,”
IEEE Trans. on Intell. Vehicles, vol. 3, no. 3, pp. 287–299, 2018.

[7] Y. Xu, H. Zhou, T. Ma, J. Zhao, B. Qian, and X. Shen, “Leveraging
Multiagent Learning for Automated Vehicles Scheduling at Nonsignal-
ized Intersections,” IEEE Internet of Things J., vol. 8, no. 14, pp.
11 427–11 439, 7 2021.

[8] Q. Jin, G. Wu, K. Boriboonsomsin, and M. Barth, “Multi-agent
intersection management for connected vehicles using an optimal
scheduling approach,” 2012 Int. Conf. on Connected Veh. and Expo
(ICCVE), pp. 185–190, 5 2012.

[9] D. Carlino, S. D. Boyles, and P. Stone, “Auction-based autonomous
intersection management,” in 16th Int. IEEE Conf. on Intell. Transp.
Syst. (ITSC 2013). IEEE, 2013, pp. 529–534.

[10] G. Cabri, L. Gherardini, and M. Montangero, “Auction-based Cross-
ings Management,” in Proc. of the 5th EAI Int. Conf. on Smart Objects
and Technol. for Social Good, 2019, pp. 183–188.

[11] G. Cabri, L. Gherardini, M. Montangero, and F. Muzzini, “About
auction strategies for intersection management when human-driven and
autonomous vehicles coexist,” Multimedia Tools and Appl., vol. 80,
no. 10, pp. 15 921–15 936, 2021.

[12] A. Mas-Colell, M. D. Whinston, and J. R. Green, Microeconomic
Theory. New York, New York: Oxford University Press, 1995.

[13] S. M. LaValle, Planning Algorithms. New York, New York: Cam-
bridge University Press, 2006.

[14] R. Rajamani, Vehicle Dynamics and Control, ser. Mechanical Engi-
neering Series. Boston, MA: Springer US, 2012.

[15] S. Li, J. Lian, A. J. Conejo, and W. Zhang, “The Market-Based
Coordination of Distributed Energy Resources,” IEEE Control Syst.
Mag., vol. 40, no. 4, pp. 26–52, 2020.

[16] J. A. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
“CasADi: a software framework for nonlinear optimization and optimal
control,” Math. Program. Comput., vol. 11, no. 1, pp. 1–36, 2019.

[17] A. Wächter and L. T. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear program-
ming,” Math. Program., vol. 106, no. 1, 3 2006.

