
Control-Minimal Time-Assigned
Path-Constrained Trajectory Optimization

Adam Morrissett and Patrick J. Martin

Abstract—Path-constrained trajectory optimization research
normally focuses on time or energy optimality. However, some
applications seek reference trajectories that satisfy other con-
straints. In this paper, we formulate a control-minimal time-
assigned path-constrained trajectory optimization problem: a
mobile ground robot must traverse a given path in a specific
amount of time using minimal control effort. Through a
nonlinear change of variables, we solve this problem using
convex optimization. We evaluate our solution with an intelligent
transportation scenario where an autonomous vehicle must
cross an intersection in a specific amount of time while following
the turn lane’s geometric center.

I. INTRODUCTION

Road networks are generally well-defined structures where
autonomous vehicles need to follow two high-level rules:
1) avoid collisions; and 2) traverse the path (trip route) in
minimal time, with minimal control, or a combination of
these goals. Some transportation applications benefit from
predictable, but not necessarily minimal, timing. In par-
ticular, scheduled transportation tasks with specific timing
requirements may be the primary objective. Consider a bus
route comprising several stops, each with a pre-arranged
departure time. If the bus arrives too early, it wastes time
and energy waiting at its stop. If it arrives too late, it will
cause disruptions in the schedule. In such a use case, the bus’s
reference trajectory and control signals should ensure the bus
arrives as close to the specified arrival time as possible.

One can generalize this scheduling concept by considering
intersection management systems (IMS) that rely on accurate
timing to predict vehicles’ traversal times and safely schedule
crossings [1]. In previous work, we developed an auction-
based IMS in which vehicles bid using their cost functions
[2]. The vehicles’ motion planners generated reference tra-
jectories and control inputs to drive through the intersection
in so-called crossing times. They also calculated a cost for
each crossing time and used those costs to define a crossing
cost function. The management system used these functions
to assign final crossing times to each vehicle.

This material is based upon work supported by the Federal Highway
Administration under Agreement No. 693JJ32245201. Any opinions, find-
ings, and conclusions or recommendations expressed in this publication are
those of the Author(s) and do not necessarily reflect the view of the Federal
Highway Administration.

The authors are with the Department of Electrical and Computer Engineer-
ing, Virginia Commonwealth University, Richmond, Virginia 23284-3068
(email: morrissettal2@vcu.edu; martinp@vcu.edu).

For each candidate crossing time, vehicles solved a trajec-
tory optimization problem. Their objective functions com-
prised a crossing time cost, a reference tracking cost, and
a control effort cost. This formulation sufficed for longer
candidate crossing times, but it caused issues when evaluating
shorter ones. Vehicles’ motion plans significantly deviated
from their reference paths in order to satisfy the crossing
time constraint, sacrificing path tracking for a lower control
cost. These reference tracking deviations often made the
vehicles move into dangerous situations, such as cutting over
sidewalks. To ensure that the IMS schedule assignments
would truly be safe, we need vehicles to generate control
inputs that kept them on their reference paths while also
satisfying the IMS time assignment.

The above challenge motivated the work presented in this
paper. The motion planners still seek an effort-minimal refer-
ence trajectory to traverse the path. However, we reformulate
the path tracking goal to a hard constraint so that the planners
consider only control inputs that keep the vehicle on the path.
We kept the crossing time constraint, meaning vehicles have
a finite time to traverse their path. Using this new approach,
control-minimal time-assigned path-constrained trajectory
optimization, the IMS may more accurately compare crossing
costs.

Solution categories for path-constrained trajectory plan-
ning include dynamic programming [3, Sec. 14.6.3], numer-
ical integration [3, Sec. 14.6.3], reachability analysis (RA)
[4], and convex optimization [5]. Numerical integration and
convex optimization methods are particularly useful when
performing time- or energy-optimal planning for robotic arms
[5], biped robots [6], and mobile ground robots [7], [8].

Time-optimal trajectory planning [9]–[11] tries to mini-
mize the path traversal time, while energy-optimal planning
typically disregards it. In contrast to those goals, we seek the
lowest control effort needed to move a robot along a path in
a specific duration. Compared to other problem formulations,
the time-assigned variant has received minimal attention.

Researchers in [12] were one of the first to study
time-assigned path-constrained trajectory planning, and they
solved the problem using nonlinear semi-infinite program-
ming. More recently, the authors of [4] extended their RA
framework for robotic arms to find trajectories of specified
duration.1 Their algorithm searches for a constraint-satisfying

1https://web.archive.org/web/20220421233339/https://hungpham2511.
github.io/toppra/python api.html

https://orcid.org/0000-0002-0753-3948
https://orcid.org/0000-0002-5896-828X
https://web.archive.org/web/20220421233339/https://hungpham2511.github.io/toppra/python_api.html
https://web.archive.org/web/20220421233339/https://hungpham2511.github.io/toppra/python_api.html


t T − t

Fig. 1. The robot traverses the path (black) starting from the beginning
(green) and stopping at the end (red). Blue points are the robot’s planning
history. The planner chooses control inputs (orange arrow) to keep the robot
on the path. The orange cone represents possible control inputs. The robot
traverses the path in T seconds.

deformation between the time-maximal and time-minimal
trajectories. However, the final result may not be control-
minimal.

Another work developed a speed planner for a heavy
vehicle crossing an intersection [11]. To avoid collisions,
the optimization problem imposed time window constraints.
The vehicle’s crossing duration had to be within one of these
windows. Our proposed formulation, in contrast, requires the
vehicle to cross in a specific amount of time.

Compared to the other solution methods, convex opti-
mization provides a framework that allows for flexible cus-
tomization of objectives and constraints. Additionally, several
solvers and front-ends exist that that ease its implementation.
In this paper, we use a nonlinear change of variables to
reformulate the original, nonlinear trajectory optimization
problem as a convex one, as done in [5] for time-optimal
planning for robotic arms. We then use a collocation method
to approximate the solution by converting the problem into a
second-order cone program (SOCP). We evaluate our solution
on several curves that vehicles commonly encounter while
driving, particularly at intersections. This paper’s contribu-
tions are 1) an application of path-constrained trajectory
optimization to mobile ground robots; 2) a formulation of
a second-order unicycle motion model; and 3) an SOCP
solution to the time-assigned path-constrained trajectory opti-
mization problem variant. Note that while this paper focuses
on autonomous vehicles, the methods we present generalize
to various mobile ground robots.

II. PROBLEM FORMULATION

Consider the problem visualized in Fig. 1. We want a
mobile ground robot to traverse a path close to a specific
time while minimizing its control effort. The robot must start
from the path’s beginning, stop at its end, and stay on this
path while moving.

A. Robot Motion Model

We model the robot in Fig. 1 as a rigid body moving on a
plane, making its configuration space C equal to the special
Euclidean group SE (2). The robot’s configuration q ∈ C is
q := (x, y, θ), where x and y represent the robot’s position
on the plane, and θ is its heading with respect to the x-axis.

The robot moves according to a unicycle motion model
under no-slip conditions. The configuration and its compo-
nents are implicit functions of time t ∈ R+, where R+ is

the set of nonnegative real numbers. The following system
of equations defines the configuration transformation for a
single-order kinematic unicycle [3, eq. (13.18)]:

ẋ = v cos θ ẏ = v sin θ θ̇ = ω (1)

where v is the robot’s scalar linear velocity (forward is pos-
itive), and ω is its scalar angular velocity (counterclockwise
is positive). Mark □̇ denotes the first time-derivative.

We could use the linear and angular scalar velocities of
(1) as control inputs, but the resulting system would be
unrealistic as robots do not start and stop instantaneously.
Differentiating (1) with respect to time results in the second-
order kinematic unicycle. The following system of equations
defines the new configuration transformation:

ẍ = ut,lin cos θ − θ̇ vq(q, q̇) sin θ

ÿ = ut,lin sin θ + θ̇ vq(q, q̇) cos θ

θ̈ = ut,ang,

(2)

where ut,lin is the scalar linear acceleration, ut,ang is the
scalar angular acceleration, and □̈ denotes the second time-
derivative. We choose the scalar linear and angular acceler-
ations as the system’s inputs ut := (ut,lin, ut,ang). Subscript
□t indicates that the system controls vary with time. Function
vq : C×R3 → R is the robot’s scalar linear velocity in terms
of its configuration and first time-derivative q̇. It is given by

vq(q, q̇) =
√
ẋ2 + ẏ2.

We use the □q subscript to denote functions of the robot’s
configuration and its derivatives.

Equation (2) is control-affine and may be restructured as

q̈ = fq(q, q̇) +Gq(q)ut, (3)

where

fq(q, q̇) =

−θ̇vq(q, q̇) sin θ

θ̇vq(q, q̇) cos θ
0

 Gq(q) =

cos θ 0
sin θ 0
0 1


B. Path-Constrained Motion

We define a path as a continuous, collision-free function
τ : [0, 1] → Cfree that maps a point s ∈ [0, 1] to a robot con-
figuration. Set Cfree is the subset of the robot’s configuration
space that excludes obstacles. Point s, which we term the
path-position, is the robot’s position along the path. Value
τ (s = 0) represents the path’s beginning, and τ (s = 1) is
its end. The path-position is an implicit function of time.

Suppose we constrain the robot’s motion to a dynamically-
feasible path. We express its configuration in terms of its
path-position [3, Sec. 14.6.3]:

q = τ (s). (4)

We also relate the robot’s velocity q̇ to the path by
differentiating (4) with respect to time:

q̇ =
dτ

ds

ds

dt
= τ ′(s)ṡ, (5)

where □′ denotes the first derivative with respect to the path-
position, and ṡ is the robot’s path-velocity.



Furthermore, we express the robot’s path-constrained ac-
celeration by differentiating (5) with respect to time:

q̈ =
d2τ

ds2
ṡ2 +

dτ

ds
s̈ = τ ′′(s)ṡ2 + τ ′(s)s̈, (6)

where □′′ denotes the second derivative with respect to the
path-position, and s̈ is the robot’s path-acceleration.

Now that we have the robot’s configuration expressed in
terms of the path, we substitute (4)–(5) into (3) to derive the
path-constrained system dynamics:

q̈ = fq

(
τ (s), τ ′(s)ṡ

)
+Gq

(
τ (s)

)
ut

= fs(s, ṡ) +Gs(s)ut, (7)

where

fs(s, ṡ) =

−τ ′3(s) ṡ vs(s, ṡ) sin(τ3(s))
τ ′3(s)ṡvs(s, ṡ) cos(τ3(s))

0

 ,

Gs(s) =

cos(τ3(s)) 0
sin(τ3(s)) 0

0 1

 ,

and
vs(s, ṡ) =

√
[τ ′1(s)ṡ]

2
+ [τ ′2(s)ṡ]

2. (8)

Subscript □s denotes functions of the robot’s path-position
and its derivatives. Notation τ□i denotes the ith component of
the path or its derivative. Furthermore, we equate (6) and (7)
to express the path-constrained dynamics entirely in terms of
the path-position, its derivatives, and the system input:

τ ′′(s)ṡ2 + τ ′(s) s̈ = fs(s, ṡ) +Gs(s)ut. (9)

We now define the basic control-minimal, time-assigned,
path-constrained trajectory optimization problem:

min.
s,ut

∫ T

0

∥ut(t)∥22 dt (10a)

s.t. τ ′′(s)ṡ2 + τ ′(s)s̈ = fs(s, ṡ) +Gs(s)ut, (10b)
u ≤ ut ≤ u, (10c)
for t ∈ [0, T ],

s(0) = 0, (10d)
s(T ) = 1 (10e)

where u and u are the lower and upper actuator limits for
ut, respectively. Constraint (10b) restricts the robot’s motion
to the path, (10c) bounds the control inputs, and (10d)–(10e)
define the boundary constraints. The traversal time T is a
design parameter that specifies how long the robot has to
traverse the path.

We want to find an optimal path-position function s⋆,
which defines a time scaling along the path [3, Sec. 7.1.3],
and an optimal control input function u⋆

t that achieves the
time scaling. In contrast to time-minimal or energy-minimal
problem variants, we seek a time scaling that causes the robot
to finish traversing the path in exactly T seconds.

The resulting control signal could be fed into the system.
Alternatively, the time scaling could be composed with the
path to form a reference trajectory that is passed into a
tracking controller.

C. Convex Reformulation

Optimization problem (10) is nonlinear in the path-position
and its derivatives, but we reformulate it into a convex
problem using a nonlinear change of variables. We follow
the reformulation in [5], which presented a convex optimiza-
tion solution for time-minimal, path-constrained trajectory
optimization with a robotic arm. Our work studies the time-
assigned problem variant for a mobile robot.

Before introducing the nonlinear change of variables, we
simplify the path-constrained dynamics from (9). Function vs
is linear in the path-velocity, so we extract ṡ from the radical
in (8) to form (with a slight abuse of notation) an alternate
equation:

vs(s, ṡ) = ṡvs(s),

where

vs(s) =

√
[τ ′1(s)]

2
+ [τ ′2(s)]

2. (11)

By substituting (11) into (9), we express the path-
constrained system dynamics with a more concise model:

hs(s)s̈ = fs(s)ṡ
2 +Gs(s)ut,

where

hs(s) = τ ′(s),

and

fs(s) =

−τ ′′1 (s)− τ ′3(s)vs(s) sin(τ3(s))
−τ ′′2 (s) + τ ′3(s)vs(s) cos(τ3(s))

−τ ′′3 (s)

 .

Next, we change the objective function’s integration vari-
able from time (t) to the path-position (s):∫ T

0

∥ut(t)∥22 dt =
∫ s(T )

s(0)

∥ut(t)∥22
ds/dt

ds

=

∫ 1

0

∥us(s)∥22
ṡ

ds .

As a consequence of changing the integration variable, we
must also introduce a new control input us : [0, 1] → R2 that
is a function of the path-position instead of time. Propagating
the change of variables into the rest of the optimization
problem, we treat s, ṡ, and s̈ as decision variables.

Finally, we introduce the nonlinear change of variables [5,
eqs. (17) and (18)]:

z(s) := ṡ2 ν(s) := s̈.

In the resulting differential-algebraic system of equations
(DAE), z is the differential state, us is the algebraic state,
and ν is the control input. As derived in [5], the system has
linear dynamics defined by [5, eq. (19)]

z′(s) = 2ν(s).



With the change of variables, we redefine problem (10) as
a convex one:

min.
z,us, ν

∫ 1

0

∥us(s)∥22√
z(s)

ds (12a)

s.t. hs(s)ν(s) = fs(s)z(s) +Gs(s)us(s), (12b)
z′(s) = 2ν(s), (12c)
0 < z(s) ≤ z, (12d)
u ≤ us(s) ≤ u, (12e)
for s ∈ [0, 1],∫ 1

0

1√
z(s)

ds ≤ T (12f)

When reformulating problem (10), we lost the traversal
time constraint T ; therefore, it is reintroduced as (12f).
Intuitively, the solver can minimize the objective cost by
reducing z and us; however, decreasing them too much will
violate the traversal time constraint (12f).

III. SOLUTION DESCRIPTION

We solve problem (12) using trapezoidal collocation [5],
[13]. First, we discretize s into a grid of K + 1 collocation
points. Since the system’s dynamics are linear in s, we
approximate ν as a piecewise-constant function, z as a linear
spline, and us as a nonlinear spline.

The objective functional (12a) is approximated as∫ 1

0

∥us(s)∥22√
z(s)

ds ≈
K∑

k=0

[∥∥uk
s

∥∥2
2

∫ sk+1

sk

1√
z(s)

ds

]
, (13)

where sk is the value of s at grid point k, and uk
s is the value

of us at collocation point sk. The analytical integral for the
second component of (13) is∫ sk+1

sk

1√
z(s)

ds =
2
(
sk+1 − sk

)
√
zk+1 +

√
zk

,

where zk is the value of z at collocation point sk.
Given the above formulation, the trajectory optimization

problem (12) is approximated as a convex program:

minimize
z0,...,zK

u0
s,...,u

K−1
s

ν0,...,νK−1

K−1∑
k=0

2
(
sk+1 − sk

) ∥∥uk
s

∥∥2
2√

zk+1 +
√
zk

(14a)

subject to hs(s
k)νk = fs(s

k)zk +Gs(s
k)uk

s , (14b)

zk+1 − zk = 2νk
(
sk+1 − sk

)
, (14c)

us ≤ uk
s ≤ us, (14d)

0 ≤ zk ≤ z, (14e)
for k = 0, 1, . . . ,K − 1,

z0 = ṡ20, (14f)

zK = ṡ21, (14g)
K−1∑
k=0

2
(
sk+1 − sk

)
√
zk+1 +

√
zk

≤ T (14h)

A. Second-Order Cone Reformulation

We reduce program (14) into a more efficient, second-
order cone program (SOCP) using the reformulation method
described in [5]. The reformulation also provides imple-
mentation improvement. Convex program solvers that rely
on disciplined convex programming, such as CVXPY, may
fail to verify the convexity of complicated expressions.2 The
general SOCP structure requires a linear objective function,
affine equality constraints, and second-order cone inequality
constraints [14, Sec. 4.4.2].

Reformulating the convex program into an SOCP re-
quires the introduction of additional decision variables
a0, a1, . . . , aK ; b0, b1, . . . , bK−1; and c0, c1, . . . , cK−1.

We introduce constraints

ak ≤
√
zk for k = 0, 1, . . . ,K. (15)

Then, we re-express objective function (14a) as

K−1∑
k=0

2
(
sk+1 − sk

)
bk

and introduce constraints∥∥uk
s

∥∥2
2

ak+1 + ak
≤ bk for k = 0, 1, . . . ,K − 1. (16)

Similarly, introducing constraints

1

ak+1 + ak
≤ ck for k = 0, 1, . . . ,K − 1, (17)

allows us to express (14h) as

2

K−1∑
k=0

(
sk+1 − sk

)
ck ≤ T . (18)

Constraints (15) and (16)–(18) will become active as the
program converges to a solution. When this happens, the
inequalities will become equalities, and the SOCP will re-
semble the convex program (14).

Constraint (15) is expressed in its conic form with∥∥∥∥ 2ak

zk − 1

∥∥∥∥
2

≤ zk + 1; (19)

constraint (16) becomes∥∥∥∥∥∥
2uk

s,lin

2uk
s,ang

ak+1 + ak − bk

∥∥∥∥∥∥
2

≤ ak+1 + ak + bk; (20)

and (17) is∥∥∥∥ 2
ak+1 + ak − ck

∥∥∥∥
2

≤ ak+1 + ak + ck. (21)

The components in the left side of inequalities (19)–(21) form
column vectors, and ∥ · ∥2 represents the Euclidean norm of
those vectors.

2https://web.archive.org/web/20211018022509/https://www.cvxpy.org/
tutorial/dcp/index.html

https://web.archive.org/web/20211018022509/https://www.cvxpy.org/tutorial/dcp/index.html
https://web.archive.org/web/20211018022509/https://www.cvxpy.org/tutorial/dcp/index.html


Finally, the SOCP reformulation of (14) is given as:

min.
z0,...,zK

u0
s,...,u

K−1
s

ν0,...,νK−1

a0,...,aK

b0,...,bK−1

c0,...,cK−1

K−1∑
k=0

2
(
sk+1 − sk

)
bk (22a)

s.t. hs(s
k)νk = fs(s

k)zk +Gs(s
k)uk

s , (22b)

us ≤ uk
s ≤ us, (22c)

0 ≤ zk ≤ z, (22d)∥∥∥∥ 2ak

zk − 1

∥∥∥∥
2

≤ zk + 1, (22e)

for k = 0, 1, . . . ,K,

zk+1 − zk = 2νk
(
sk+1 − sk

)
, (22f)∥∥∥∥∥∥

2uk
s,lin

2uk
s,ang

ak+1 + ak − bk

∥∥∥∥∥∥
2

≤ ak+1 + ak + bk, (22g)

∥∥∥∥ 2
ak+1 + ak − ck

∥∥∥∥
2

≤ ak+1 + ak + ck, (22h)

for k = 0, 1, . . . ,K − 1,

2

K−1∑
k=0

(
sk+1 − sk

)
ck ≤ T, (22i)

z0 = ṡ20, (22j)

zK = ṡ21 (22k)

Some combinations of reference path, traversal time, and
control bounds may render this problem infeasible. We
assume the reference path is dynamically feasible and that
the planner implementation will report if the problem is
infeasible. To reduce computation time, a practitioner may
place a time-optimal module in front of our system to
determine the minimum feasible traversal time.

IV. EXPERIMENTS

We evaluated our solution against three different path types
that vehicles commonly encounter at intersections: a left turn,
a right turn, and a straight path. These paths are represented
as follows:

τleft(s) =

 αleft cos(πs/2)− αleft

αleft sin(πs/2)

arctan
(
τ ′left,2(s)/τ

′
left,1(s)

)


τright(s) =

 −αright cos(πs/2)
αright sin(πs/2)

arctan
(
τ ′right,2(s)/τ

′
right,1(s)

)


τstraight(s) =

 1
αstraights

arctan
(
τ ′straight,2(s)/τ

′
straight,1(s)

)


Parameters αleft, αright, and αstraight represent the arc radius
(for turns) and length (for straight paths). Table I shows the
path parameters, traversal time ranges, and actuator limits
used in our evaluations.

TABLE I
SIMULATION PARAMETERS

Parameter Min. Value Max. Value Step Unit

αleft and αright 5 15 1 m
αstraight 5 15 1 m

ut,lin and us,lin - 2.5 - m/s2

ut,lin and us,lin −2.5 - - m/s2

ut,ang and us,ang - 2.5 - rad/s2

ut,ang and us,ang −2.5 - - rad/s2

T 5 25 1 s

TABLE II
TRAVERSAL TIME ERROR METRICS

Path Mean Error Standard Deviation Runs

τleft 6.7501× 10−8 8.6470× 10−8 231
τright 6.8975× 10−8 9.0152× 10−8 231
τstraight 1.1068× 10−7 1.0731× 10−7 231
All 8.2594× 10−8 9.7135× 10−8 693

Each run is a combination of specific α□ and T values.

Our solution is implemented in Python using CasADi [15]
to generate the path and its derivatives and CVXPY [16]
to model and solve the SOCP problem. The code for our
experiments is available in our lab’s GitHub repository.3

For the collocation implementation, we performed a hyper-
parameter sweep over K ∈ [5, 200], the grid resolution, and
found that K = 20 provided both reasonable approximation
and solver stability.

We simulated the vehicle using a phase space variant of
the second-order unicycle [3, eq. (13.46)]. The model’s state
vector ξ ∈ R5 is ξ := (x, y, θ, v, ω), and its state transition
is defined by

ẋ = v cos θ ẏ = v sin θ θ̇ = ω

v̇ = ut,lin ω̇ = ut,ang

After solving SOCP problem (22), the system control
is approximated with a third-order spline using cubic in-
terpolation. This interpolated control function is denoted
ûs : [0, 1] → R2. We also approximated the transformed
differential state using the same interpolation method and
refer to the interpolant as ẑ : [0, 1] → R.

The simulated robot was actuated using the control signal
generated by the motion planner. We created a grid over
s using J + 1 points and integrated the system over the
grid point intervals using Runge–Kutta fourth-order (RK4)
integration. The control signal ûs is held constant within
each interval [sj , sj+1], for j = 0, 1, . . . , J − 1.

A. Experimental Results

Table II shows the mean traversal time error and standard
deviation for all three path types over the different path
parameters and traversal times. As shown in the table, the
robot’s traversal durations matched its assigned times and
with minimal error.

Fig. 2 visualizes the simulated robot’s trace for one of the
test paths. Fig. 3 visualizes the system trajectory and control

3https://github.com/the-hive-lab/trajectory optimization

https://github.com/the-hive-lab/trajectory_optimization


−4 −2 0

0

2

4

x position (x) [m]

y
po

si
tio

n
(y

)
[m

]

traced path
reference path

Fig. 2. Simulated robot’s path trace. The dashed gold line represents a left-
turn reference path, and the solid blue line is the robot’s path.

−4

−2

0

x
[m

]

0

2

4

y
[m

]

1.5
2

2.5
3

θ
[r
a
d

]

−0.5

0

0.5

u
s
,l
in

[m s2
]

0 0.2 0.4 0.6 0.8 1
−0.1

0

0.1

path-position (s) [dimensionless]

u
s
,a
n
g

[r
a
d

s2
]

Fig. 3. State trajectory from an example simulation. The dashed gold lines
are the reference components of the path. The solid blue lines are the
system’s trace from the simulation.

inputs for the same test path. Due to space constraints, we
omit the scalar linear and angular velocity plots. The first
three plots show a slight tracking error, which we believe is
due to accumulated approximation errors in the simulation.

The experiment computer was equipped with an Intel
Core i5-8250U processor and 16GB of memory. The solver
runtime across all runs averaged 27.44ms with a standard
deviation of 51.86ms, suggesting it could be performed in
online.

V. CONCLUSION

In this paper, we proposed a convex optimization solu-
tion to the control-minimal time-assigned path-constrained
trajectory optimization problem. Using a nonlinear change of
variables, the original problem formulation is converted into
a convex problem then solved using trapezoidal collocation.

From the experimental results, we conclude that our proposed
method works as expected. The robot traversed the given
paths in the specified time and tracked it with minimal error.

One limitation to our approach is that it may not extend to
other motion models. Expressing the robot’s dynamics in a
form that was linear in the squared path-velocity and the path-
acceleration was critical to this approach, but other motion
models may not have this structure. Another limitation is
that we assume a collision-free reference path. If an obstacle
blocks the path, a higher-level path planner will have to find
a new one. Fortunately, our runtime is low enough that this
re-planning process could be performed online.

For future work, we plan to apply our approach to other
motion models, such as the second-order bicycle model.
Additionally, we will integrate our planner into the Robot
Operating System (ROS) 2 middleware to simulate it in the
Gazebo simulator and implement it on a physical robot.

REFERENCES

[1] Z. Zhong, M. Nejad, and E. E. Lee, II, “Autonomous and semiau-
tonomous intersection management: A survey,” IEEE Intell. Transp.
Syst. Mag., vol. 13, no. 2, pp. 53–70, 2021.

[2] A. Morrissett, P. J. Martin, and S. Abdelwahed, “Socially-optimal
auction-theoretic intersection management system,” in 2022 IEEE
Intell. Veh. Symp. (IV), June 2022, pp. 1340–1346.

[3] S. M. LaValle, Planning Algorithms. New York, USA: Cambridge
University Press, 2006.

[4] H. Pham and Q.-C. Pham, “A new approach to time-optimal path
parameterization based on reachability analysis,” IEEE Trans. Robot.,
vol. 34, no. 3, pp. 645–659, June 2018.

[5] D. Verscheure, B. Demeulenaere, J. Swevers, J. D. Schutter, and
M. Diehl, “Time-optimal path tracking for robots: A convex optimiza-
tion approach,” IEEE Trans. Autom. Control, vol. 54, no. 10, pp. 2318–
2327, October 2009.

[6] Q.-C. Pham and O. Stasse, “Time-optimal path parameterization
for redundantly actuated robots: A numerical integration approach,”
IEEE/ASME Trans. Mechatron., vol. 20, no. 6, pp. 3257–3263, De-
cember 2015.

[7] P. Shen, H. Zou, X. Zhang, Y. Li, and Y. Fang, “Platoon of autonomous
vehicles with rear-end collision avoidance through time-optimal path-
constrained trajectory planning,” in 2017 11th Int. Workshop on Robot
Motion and Control (RoMoCo), July 2017, pp. 232–237.

[8] P. Shen, X. Zhang, Y. Fang, and M. Yuan, “Real-time acceleration-
continuous path-constrained trajectory planning with built-in tradeoff
between cruise and time-optimal motions,” IEEE Trans. Autom. Sci.
Eng., vol. 17, no. 4, pp. 1911–1924, October 2020.

[9] B. Gopalakrishnan, A. K. Singh, and K. M. Krishna, “Time scaled
collision cone based trajectory optimization approach for reactive
planning in dynamic environments,” in 2014 IEEE/RSJ Int. Conf. Intell.
Robot. and Syst., September 2014, pp. 4169–4176.

[10] A. K. Singh and Q.-C. Pham, “Reactive path coordination based on
time-scaled collision cone,” J. Guid. Control, and Dynamics, vol. 41,
no. 9, pp. 2031–2038, September 2018.

[11] S. Frölander and R. Hasan, “Convex optimization-based design of a
speed planner for autonomous heavy duty vehicles,” Master’s thesis,
KTH Royal Institute of Technology, Stockholm, SE, 2019.

[12] C. Guarino Lo Bianco and M. Romano, “Optimal velocity planning for
autonomous vehicles considering curvature constraints,” in Proc. 2007
IEEE Int. Conf. on Robot. and Automat., April 2007, pp. 2706–2711.

[13] M. Kelly, “An introduction to trajectory optimization: How to do your
own direct collocation,” SIAM Rev., vol. 59, no. 4, pp. 849–904, 2017.

[14] S. Boyd and L. Vandenberghe, Convex Optimization. New York, USA:
Cambridge University Press, 2004.

[15] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
“CasADi – A software framework for nonlinear optimization and
optimal control,” Math. Program. Comput., vol. 11, pp. 1–36, 2019.

[16] S. Diamond and S. Boyd, “CVXPY: A Python-embedded modeling
language for convex optimization,” J. Mach. Learn. Res., vol. 17,
no. 83, pp. 1–5, 2016.


	Introduction
	Problem Formulation
	Robot Motion Model
	Path-Constrained Motion
	Convex Reformulation

	Solution Description
	Second-Order Cone Reformulation

	Experiments
	Experimental Results

	Conclusion
	References

